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Abstract
In Lagrangian-Eulerian spray simulations, the secondary breakup of the atomized droplets is typically han-
dled by an atomization model, such as the Kelvin-Helmholtz Rayleigh-Taylor model (1999 Atomization and
Sprays 9(6)) or the Taylor Analogy Breakup model (1987 SAE Technical Paper). This problem is revisited
in this paper by imposing a joint probability density function (JPDF) over the size and velocity spaces
of the droplets and enforcing the conservation constraints of mass, momentum, and energy. Five different
models are proposed and tested. In the first three models, the size distribution is given in the form of
the Nukiyama-Tanasawa, diameter-dependent Rosin-Rammler, and mass-dependent Rosin-Rammler distri-
butions. For droplet velocity, a Dirac delta function centered on the parent droplet is assumed. The results
show poor agreement with the experimental measurements. The next two models are based on the Maximum
Entropy Methodology (MEM), which is contingent upon maximizing the Shannon entropy of the JPDF. In
the first MEM model, the MEM is only applied to the size distribution while the velocity distribution is
assumed to be a Dirac delta function. In the second MEM model, the size and velocity distributions are
assumed to be fully coupled. Only the second MEM model agrees with the experimental measurements over
a wide range of Weber numbers. Also, the second MEM model confirms the expected trend of a reduction
of droplet size as the degree of droplet breakup intensity increases.
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1 Introduction

Due to its wide-ranging industrial applications,
such as spray combustion [1, 2], fire suppression
[3, 4], and agrochemicals [5, 6], predicting the
droplet size statistics from the secondary breakup
of the unstable liquid elements in the spray, known
as secondary droplet atomization, is a long-standing
subject of research. The Lagrangian-Eulerian (LE)
models (e.g. [7], [8], [9]) is a particular means of
exploring such problems, due in part to its straight-
forward application to constituting a realistic spray
configuration.

In the LE framework, the gas phase is treated
as a continuous phase and resolved in the Eule-
rian framework. The liquid phase is treated as
a group of discrete liquid blobs. The breakup of
a blob into droplets is then modeled through La-
grangian droplets. Attempts to successfully estimate
droplet size within this context have resulted in var-
ious methods. Among these, the Kelvin-Helmholtz
Rayleigh-Taylor model (the KH-RT model) [7] has
received considerable attention as a viable option for
simulating flows involving an intensive level of at-
omization severity. The KH-RT model employs the
Kelvin-Helmholtz instability to describe the insta-
bility of the surface of the intact liquid core, and
Rayleigh-Taylor instability to the surfaces of the at-
omized droplets, which, together with empirical co-
efficients, yields the average droplet size. Employing
the Rosin-Rammler empirical function [10] then pro-
duces the droplet size distribution. The other route
in estimating the droplet size is the Taylor Analogy
Breakup model [8] (the TAB model), whose prin-
cipal interest lies in the Taylor analogy between a
damped/forced harmonic oscillator and an oscillat-
ing/distorting droplet. In line with this mean value,
the droplet size is then randomly chosen from a Chi-
square distribution [11].

Another attractive means of predicting droplet
size statistics is to use a theoretically based ap-
proach of the maximum entropy method (MEM) ad-
vanced by Sellens and Brzustowski [12] as well as
Li and Tankin [13]. In their works, they employ
the Shannon entropy (S), which serves as a mea-
sure of the information produced when one message
is selected from possible messages [14], and which
is analogous to the Gibbs entropy in the statisti-
cal thermodynamics, for predicting the droplet size
and/or velocity distributions in the spray. In accor-
dance with such a relationship, and with appropriate
conservation constraints of droplet properties, they
found that the most probable droplet state after the
breakup is the one in which the measure of the Shan-
non entropy reaches the maximum value.

The early work of the MEM method is targeted
for sprays, in which the time required to complete
a breakup event is relatively long. Accordingly, a
source term is typically included in the conserva-
tion equations of droplet momentum and energy, ac-
counting for the momentum loss and energy dissi-
pation during atomization. Attempts at employing
the MEM formalism to the spectrum of atomization
problems, with attention being paid to the model-
ing of the source terms, have led to disparate MEM
models (e.g. [15, 16, 17]).

For the secondary atomization of droplets, the
breakup time is relatively short. This raises the
question as to whether the inclusion of the source
term to the MEM model is appropriate, among other
things. Surveying the literature suggests that this
topic has largely been neglected in previous studies
on the MEM. To the best knowledge of the authors,
only the paper by Bodaghkhani et al. [18] employs
the MEM method for secondary droplet atomiza-
tion. However, they still include the source terms in
their analysis, although the source terms are mod-
ified in line with the specifications of the droplet
breakup.

In response to the limited studies on MEM
secondary-breakup models, this paper sets out to
fashion a MEM-based model for calculating the dis-
tribution of the secondary droplets The model will
be compared and contrasted with another MEM
model which is derived under certain simplified con-
ditions and other analytical models which inherit the
formulations of the empirical distributions.

2 Derivation of droplet breakup models

We assume that the moving direction of the
droplets after the breakup remains unchanged. The
conservations of mass, momentum, and total energy
for a breakup event q of a droplet, which at the pre-
cise moment of breakup has the following relation-
ship
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where ρL is the droplet density, Do is the diameter
of the parent droplet, uo is the velocity magnitude
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of the parent droplet in a direction of travel relative
to the gas, and σ is the surface tension coefficient.
Furthermore, Nq is the number of secondary droplets
generated per breakup event of realization q.

Taking an ensemble average for Eqs. 1 - 3 yields
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The characteristics of the parent droplet do not
change from one realization to another; hence, only
the quantities on the LHS of Eqs. 4 - 6 change. To
facilitate their description, we define a joint prob-
ability density function (JPDF). The JPDF is de-
noted by fDu(D,u), which is a continuous function
whose value at the point (D, u) is the relative like-
lihood of finding the droplet of diameter D and ve-
locity u.

We can define a general moment by fDu

〈Drus〉 =

∫
ΩD∪Ωu

(Drus)fDudDdu (7)

with r and s being integers, which, together with the
following equivalency between the expected values
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Substituting Eq. 9 into Eqs. 4 - 6, and after some
manipulations, we have∫
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where WeL,30 = (ρLu
2
oD30)/σ is the liquid-density-

based Weber number relating to the mass mean di-
ameter, D30. The definition of D30 is
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where 〈Nq〉 is the expected value of Nq.
Eqs. 10 - 12 along with the normalization re-

quirement of fDu ∫
ΩD∪Ωu

fDudDdu = 1 (14)

constitute a set of constrains according to which the
JPDF has to satisfy. In line with such constraints,
five different models pertaining to the formulation
of the JPDF will be derived and tested.

2.1 The Nukiyama-Tanasawa-based model (re-
ferred to as NT)

We assume that fDu is related to the droplet size
distribution fD(D) by the following relationship

fDu = fD(D)δ(u) (15)

where fD(D) is given in the form of the Nukiyama-
Tanasawa empirical distribution [19]

f(D) = C1D
2 exp

(
−C2 − C3D

3
)

(16)

and where C1, C2, and C3 are the unknown con-
stants which need to be solved. In addition, δ(u)
is the Dirac delta function centered at the parent
droplet (i.e. there is no change in the droplet veloc-
ity after breakup):

δ(u) =
1

2π
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In this manner, Eq. 11 is reduced to Eq. 10.
Meanwhile, Eq. 12 is simplified as:∫
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We first solve C1 and C2. This is done by
putting Eq. 15 - 17 into Eqs. 14 and 10, yielding
C1 = 3C3 and C2 = − ln

(
D3

30C3

)
. The estimation of
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D30 follows Eq. 13, together with an empirical cor-
relation of 〈Nq〉 (which is obtained by curve-fitting
to Jain and colleagues’ simulation data [20], and is
calibrated with Kim et al.’s experimental measure-
ments [15]). This is given as

D30 =
Do

(5.5392We2.2207
G )1/3

(19)

where WeG = (ρGu
2
oDo)/σ is the gas-density-based

Weber number.
With regards to C3, it is obtained by putting

Eq. 15 - 17 into Eq. 18, which, along with the
known expressions of C1 and C2 as functions of C3,
yields C3 = 1/{D3

32[Γm(5/3)]3}. Here, Γm(n) is the
gamma function, Γm(n) =

∫∞
0

exp(−x)x(n−1)dx,
and D32 is the Sauter mean diameter.

The estimation of D32 is given by decomposing
D32 into
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where the value of (MMD/D32) is given as 1.2 [21].
The fraction MMD/D30 is obtained by combin-
ing the two empirical correlations provided by Mon-
aghan et al. [22], yielding MMD/D30 = 1.61.

The model is given as:
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2.2 The diameter-dependent Rosin-Rammler-based
model (referred to as RR (dia))

Like the case of the first model, we begin by em-
ploying Eq. 15, yet with FD being given in the form
of the diameter-dependent Rosin-Rammler function
[23]

fD =
n
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where m and n are the unknown parameters.
Once more, we assume that the droplet velocity

distribution follows the Delta function. In line with
this assumption, and due to the fact that Eq. 22
inherently satisfies the normalization constraint [23],
the solutions of m and n are obtained by satisfying
Eq. 10 and Eq. 18. This leads to two nonlinear
equations. Solving both equations numerically then
yields the solutions of m and n.

2.3 The mass-dependent Rosin-Rammler-based
model (referred to as RR (mass))

The third model is similar to the second model,
yet with fD being given in the form the mass-

dependent Rosin-Rammler function [23]
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where m and n are the unknown parameters. Like
Eq. 22, Eq. 23 has shown to be matched with the
normalization constraint [23], so m and n are again
determined by satisfying Eq. 10 and Eq. 18. This
is given as:
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2.4 The three-Lagrange-multiplier MEM model (re-
ferred to as MEM (3-Lag))

According to the MEM, and along with the
Boltzmann’s constant (kB), the most probable
droplet state after breakup, Pj , is the one in which
the measure of the Shannon entropy (S) [14]

S = −kB
n∑

j=0

Pj lnPj (25)

reaches the maximum value in line with m conser-
vation constraints and the normalization constraint
of Pj :

n∑
j=0

Pj = 1 (26)

Here, kB is the Boltzmann constant.
We assume that fDu is the continuous counter-

part of Pj . Accordingly, we put the Shannon entropy
in continuous form, and so Pj can be approximated
as fDu:

S = −kB
∫

ΩD∪Ωu

fDu ln(fDu)dDdu (27)

Once again, the droplet velocity distribution is
assumed to the delta function. In line with this as-
sumption, the Lagrange multiplier method is used
for constructing the fD which exhibits the maximum
Shannon entropy, given the constraints described in
Eqs. 10, 14, and 18. This is given as:
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where λ0, λ1, λ2 are the unknown Lagrange mul-
tipliers and can be numerically solved by matching
Eqs. 10, 14, and 18.
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2.5 The four-Lagrange-multiplier MEM model (re-
ferred to as MEM (4-Lag))

The second MEM model takes the droplet ve-
locity variations after the breakup into considera-
tion. In this manner, we shall consider the constrains
given in Eqs. 10 - 14. Then the maximum entropy
method is used in conjunction with the Lagrange
multiplier methods to determine fDu, which gives
us
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The four unknown Lagrange multipliers, [λ0 to λ3],
are numerically solved by matching Eqs. 10 - 14.

Having established fDu, we can construct the
droplet size distribution, fD(D) =

∫
Ωu
fDudu, which

is a marginal density function of fDu relating to
droplet size. Likewise, integrating fDu into deter-
minations of droplet size yields the droplet velocity
distribution, i.e. fu(u) =

∫
ΩD

fDudD.

3 Assessment of model performance

For assessing the performances of the models,
we consider the experimental data of Hsiang and
Faeth [24], which gives the cumulative distribution
percentage of the droplet volume as a function of
D/MMD in the bag, multi-mode, and sheet thin-
ning breakup regimes.

Fig. 1 features the comparisons between pre-
dicted values and the measured data. The best
agreement is found for the four-Lagrange-multiplier
MEM model (Eq. 29), followed by the three-
Lagrange-multiplier MEM model (Eq. 28). The
remaining three models (Eqs. 21, 22, and 24) do
not yield reasonable agreement. This result also in-
dicates that one underlying model assumption that
the secondary droplet velocity is the same as that of
the parent droplet is not appropriate.

As further validation, we check the predicted
correlation between fD and WeG. The attention
is confined to the four-Lagrange-multiplier MEM
model which exhibits the strongest agreement with
the experimental measurements. In line with the
results in Fig. 2a, when WeG increases, which is
equivalent to the severity of atomization being in-
tensified, the distribution of fD skews to the left cor-
responding to a smaller mean value of D. In these
circumstances, the normalization constraint of fD,
i.e.

∫
ΩD

fDdD = 1, renders the peak value rela-
tively high. The droplet velocity is distributed fol-
lowing a normal distribution centered at uo, with a

small mean value, as shown in Fig. 2b. When WeG
increases, which pertains to a case where a larger uo
is present, the mean value of fu increases while its
peak value decreases.
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Figure 1: Comparison between the model predic-
tions and the experimental measurements of Hsiang
and Faeth [24]: (a) bag breakup (b) multi-mode
breakup and (c) sheeting thinning breakup regimes.
The estimations of the models are generated by giv-
ing WeG the values of 20, 60, and 100.

Conclusions

We propose five droplet breakup models for es-
timating the droplet size distribution of secondary
droplet atomization. The model based on the maxi-
mum entropy method and which satisfies the conser-
vations of mass, momentum, and energy is found to
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exhibit the strongest agreement with the experimen-
tal measurements. This result also indicates that the
prediction of the droplet size is affected by the den-
sity function of the droplet velocity, and the best
prediction accuracy is reached when the droplet ve-
locity distribution follows a normal distribution.
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Figure 2: Marginal density functions of the four-
Lagrange-multiplier MEM model: (a) droplet size,
fD, and (b) droplet velocity, fu.
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