
 1

Fall 2017 ME759 Final Project Report
University of Wisconsin-Madison

Parallelizing Advection Equation using OpenMP, MPI
and CUDA

Arpit Agarwal
Raunak Bardia
Chia-Wei Kuo

 December 21, 2017

 2

Abstract

In this project, we would try to parallelize the two-phase flow C++ solver made by our group in 2015.
This solver could well reproduce the 2D pure-advection problem with a accurate fourth-order
accuracy. However, there are some drawbacks associated with the use of the code. One is that the
code is developed based on sequential calculation perspective. Therefore, the code would be of
limited use when it comes a high mesh resolution calculation. Besides, the code is not optimized
either, which would make the user hard to access. To solve these problems, we would first optimize
the serial code by further dividing the code into several files, including a main program and header
files that declare all variables and functions. We also try a different optimization choice in the
Makefile. Moving from the serial optimization is the code parallelization. We would attempt the
three popular approaches, i.e. OpenMP, MPI, and CUDA, and compare their performance against the
original serial code. Based on the scaling analysis, it is found all of the three parallelization
approaches could substantially speedup the code, in which CUDA has the largest improvement while
MPI has the least enhancement, and OpenMP is ranked between them. The successful implementation
of code parallelization could be extended to account for momentum equation solver or in a more
realistic but complex 3D simulation in the future.

 3

Contents

1. Introduction ………………………………………………………………………………………4
2. Methods …………………………………………………………………………………………..4
3. Implementation …………………………………………………………………………………..5
 3.1 Serial code optimization……………………………………………………………………….5
 3.2 Code parallelization……………………………………………………………………………6

 3.2.1. OpenMP………………………………………………………………………...…………6
 3.2.2. MPI……………………………………………………………………………..………….6

 3.2.3 CUDA……………………………………………………………………………………..6
 3.2.4 Combination of MPI and OpenMP…………………………………………..……………7
4. Results and discussions…………………………………………………………………………...7
 4.1. Verification……………………………………………………………………………….....…7

4.2. Scaling results…………………………………………………………………………………8
 4.2.1. Overall comparison ………………………………………………………...……………..8
 4.2.2. OpenMP scaling ………………………………………………………………………..…9

 4.2.3 CUDA performance ……………………………………………………………………..10
 4.2.4 MPI combining OpenMP scaling…………………………………………..…………….11
5. Conclusions and future works…………………………………………………………………...12

 4

1. Introduction
Sharp capture of liquid-gas interface is the important topic in two-phase flow simulations. With a
precise depiction of interface movement, the transient flow dynamics, such as primary breakup or
phase change, could be better understood through numerical approach. In this perspective, a new two-
phase flow 1000-line C++ code was developed by our group In 2015, mainly by Raunak Bardia (one
of the team member). The code is capable of locating the liquid-gas interface to a accurate fourth
order accuracy. The numerical algorithm is based on the Gradient Augmented Level Set (GALS) [1],
which is one of the improved version of of the classical Level Set approach by solving one more
equation representing the gradient of the level set function.

The code is currently aimed at pure-advection problem [2] only. This means the motion of the liquid-
gas interface is advected purely based on the prescribed velocity field v(x,y,t), and the momentum
equation solution is bypassed. Besides, it is applicable for 2D calculation only. The extension of this
code for dealing with a complete flow solver or in 3D simulation is beyond the current scope, and this
may be initiated in the future.

Under the conditions above, our code performs well in attaining high accuracy. However, some limits
still exist and need to be concerned. The code we have developed is for sequential calculation only,
and it is not parallelized. Besides, we did not modularize the code, which means all functions are
directly written in the main code. These two points would limit the code usage when it comes to the
high mesh resolution calculation such as 512x512, where 512 is the grid number in the main
coordinates (x and y).

To improve the code usage, we would first work on serial-optimization. Following this is the code
parallelization, which would be main focus of this final project. We will try to implement all three
methods of parallelization we learned in this class, including (1) multi-threaded - OpenMP, (2) GPU -
Cuda, and (3) multi-node - MPI. To simplify the problem, we would focus on the the square domain
only.

The report would be organized as follows. Fistly we would briefly describe the methods to be used,
including serial optimization and parallelization. Then we would state how we implement those into
our code. After the implementation, several simulations would be run for doing scaling analysis, and
they would be compared with the original performance to see how much improvement we could get.
Finally is the conclusion and future work, where we would present the possible direction for further
code modification.

2. Methods
Parallelizing the code should be based on the “good” serial code, i.e. the code is supposed to exhibit
good computational performance. With a better serial code, we could get higher improvement for
code parallelization. Thus, the first task is on the serial code optimization. We would modulate all
functions used to make the code succinct. This means we would divide the original single c++ file
into several smaller ones, including a main program and a group of header files. Inside the main
program, it would only execute the functions by calling the corresponding header files, and this is the

 5

end of serial code optimization. Then, code parallelization would be implemented. We would attempt
all three methods we learned from this class, i.e. OpenMP, MPI, and CUDA. These could help us
better understand the characteristics of each method. As suggested by the class, generally, CUDA is
good for fine grain, while OpenMP is favored for coarse grain. MPI is otherwise beneficial for the
calculations that require a vast amount of large memory. Because there is no complex procedure in
our code, where we mainly use a simple if and switch clause, we expect CUDA should be more
effective than OpenMP in enhancing the code performance. Regarding MPI, currently we are not
familiar with how to dynamically communicate each rank for achieving two-way data sharing, which
is essential for the task belonging to the CFD realm. Therefore, we anticipate the MPI may not be
comparable to CUDA as well.

3. Implementation
In this section, we would illustrate how we implement the methods mentioned in Section-2.

3.1 Serial code optimization
The folder containing the original code is shown in Figure 1 (top), where GALS_Advection.cpp
is the main program which contains around 1000 lines. We would divide GALS_Advection.cpp
into several small ones, including a main program and several header files, as shown in Figure 1
(bottom).

Figure 1: (Top) the snapshot of original serial code; (bottom) the snapshot of the code after

cleanup

Here we mainly modulate all functions into the header file, AdvectionPointCalcs.h. Inside
this header file, all main functions are declared. The other improvement we made is on the
optimization choice in the Makefile. We change it to O3 from O, as shown in Figure 2.

 Figure 2: (Top) the original choice of optimization in the Makefile; (bottom) the new choice

 6

3.2 Code parallelization
Now we turn our focus to parallelize the serial code. OpenMP, MPI, CUDA would be respectively
implemented. Further, the combination of MPI and OpenMP is also attempted.

3.2.1 OpenMP
We use 32 threads based on the Euler server. OpenMP is used for all functions declared in the
AdvectionPointCalcs.h. For each parallelized function, we use schedule(static) and
collapse clauses, as shown in Figure 3.

 Figure 3: The snippet of OpenMP implementation

3.2.2 MPI
We divided the tasks for calculating the two functions in AdvectionPointCalcs.h into two
ranks. For rank-1, the two functions are calculated for only one half the grid cells, and the calculation
for the other half grid cells is executed in rank-2. After rank-2 finishes its tasks, the data is sent back
to rank-1 by blocking type communication. When rank-1 receives the data, it would continue and
finish the calculation by calling the other functions, as shown in Figure 4.

 Figure 4: The snippet of MPI implementation

3.2.3 CUDA
From the basics of fine-grain parallelism the concept of CUDA parallelization was based on assigning
each grid node to a single thread of the GPU. The CUDA program required a complete overhaul of
the vectorized data types used in the serial program as that type was not supported by the GPU. The
variables that store the level set information for each grid point were converted to a one-dimensional
pointer just like the matrix examples we did in our assignments on CUDA.
The numerical algorithm that was followed by each thread was as follows:

 7

- Calculate the advection point from which the level set data will be updated for the next time
step

- Calculate the interpolated value of level set at that advection point using the nearby points -
This required access to spatially local global memory by each thread.

- Evaluate the gradients of level set using the interpolated value and doing a time integration on
that

Although, it was a one dimensional pointer that stored the N x N values at the grid points, the grid
was still treated in two dimensions. The grid was divided into Nb x Nb blocks, each with a tile size of
Nt x Nt threads, where Nt <= 32. The corresponding node index for each thread was obtained as
shown in Figure 5a, and the corresponding position in the 1D pointer was obtained as shown in Figure
5b.

 Figure 5a: Thread Configuration of Grid

 Figure 5b: Array Location of the Node

3.2.4 Combination of MPI and OpenMP
As a further extension, we try to combine MPI and OpenMP. The procedure is basically the same as
Section 3.2.2, but with all function being parallelized at the same time using OpenMP.

 4. Results and discussions

4.1 Verification
To verify the solution obtained from these codes we ran a Vortex flow test case. The system is
initialized with some level set values at each grid point and the level set is subjected to a vortex flow
for a time Tperiod. The flow reverses after half the time and ideally we should expect the level set to
come back to its original values at the end of time period.

We calculate the maximum error between the initial and final level set values obtained from the
advection algorithm. The results shown below are for the results obtained from the CUDA code. As
expected, Figure 6 shows that the error values are converging as the grid size decreases and the error
decreases by nearly a cubic power of the grid size, which is expected from the numerical analysis of
this scheme [1]. The pictorial representation of the case for different grid sizes at the maximum
deformation is shown in Figure 7.

 8

Figure 6: Level set error convergence for vortex velocity field

Figure 7: Grid Sizes: (a) 64x64 (b) 128x128 (c) 256x256 (d) 512x512. (a) to (d) is counted from

the left to the right.

4.2 Scaling result
After verifying the parallelized code, we would run several simulations respectively using OpenMP,
MPI, CUDA, and the combination of MPI and OpenMP. The computational performance is compared
against the original serial code as well as the optimized serial code.

4.2.1 Overall comparison
Figure 8 shows the overall comparison, where N is the total problem size (32x32, 64x64, 128x128,
and 256x256). Several points are drawn based on this result.

 9

 Figure 8: The performance comparison of each approaches illustrated in Section 3 against the
original serial code

● Speedups:

○ OpenMP (40 threads) vs Original Serial : 22.4 times faster
○ CUDA vs OpenMP (40 threads): 2.11 times faster
○ Overall speedup (CUDA vs orig serial): 47.5 times faster

● CUDA performs poorly for smaller problem sizes - overhead of moving data is relatively high
for smaller cases

● CUDA performs much faster for higher problem sizes - almost an order of magnitude faster
than the fastest OpenMP implementation

● MPI with OpenMP (2 ranks x 40 threads) performs slower than a pure OpenMP
implementation (40 threads). Communication overhead in MPI is probably killing the
performance.

● Note that there are only two data points for the serial code - this is because the code is
prohibitively slow and we could not run the larger cases with it.

4.2.2 OpenMP scaling
Figure 9 shows the OpenMP Scaling. It indicates that

● A near linear speedup is obtained when the number of threads used for the OpenMP
implementation is increased from 2 to 4 and the speed up begins to saturate with further
increase in the number of threads.

● The tests conducted up to 32 threads continued to show a declining trend in the runtime.

 10

 Figure 9: Scaling analysis of the OpenMP

4.2.3 CUDA performance
Figure 10 shows the effect on run time by the use for different number of threads in a single CUDA
block. The tile size in the following discussion refers to the number of threads in a single direction in
a block.

● Tile size 32 (1024 threads per block) performs worse than tile sizes of 16 and 8
● We suspect this is an occupancy issue

○ Each thread requires a fixed no. of registers
○ No shared memory usage, therefore no. of registers is the bottleneck
○ 1024 threads per block leads to lower occupancy and therefore poorer performance

● Tile sizes of 16 (256 threads per block) and 8 (64 threads per block) both show an improved
performance for the same problem size, which indicates that we do not hit the registers limit
in these cases.

 11

 Figure 10: Scaling analysis of CUDA

4.2.4 MPI combining OpenMP scaling
Figure 11 shows the performance metric for the MPI combining OpenMP implementation with
different number of OpenMP threads. A near linear speedup is obtained when the number of threads
used for the OpenMP implementation is increased from 2 to 4.

 Figure 11: Scaling analysis of MPI combining OpenMP

 12

5. Conclusions and future works
The code parallelization is working well with substantial performance improvement. Among the
three parallelization approaches, CUDA exhibits the best performance, while MPI has the lowest
effect. OpenMP is the one ranked between CUDA and MPI.

The CUDA implementation was very direct and each node was treated as a separate thread for
processing, which is in line with the fine grain parallelism ideology of CUDA. The following areas of
improvement were identified

- Use of shared memory - Each node requires its adjacent node values to create an interpolant
in this numerical scheme. Currently, each node reaches out to the global memory for this
information.

- Use of vectors - The current storage of data was done using 1D pointers. However, it may be
beneficial to use vectors instead.

The OpenMP implementation was the most straightforward. Improvements in the OpenMP use can be
obtained by:

- The current implementation parallelizes the for loop without much insight into the movement
of data.

- Some OpenMP threads may require previou time data of other nodes for creating the
interpolant. This may lead to some NUMA issues, which have not been investigated here.

The reason why MPI could not deliver a good enhancement is twofold.

- Our performance analysis for all codes were done on Euler. Only two ranks were available
for a single job, which limited the use of MPI.

- More importantly, the entire code has not been parallelized using MPI. Only the first two
functions are solved on two separate ranks and the data, thus generated is transferred back to
the master rank for a serial processing of the following functions.

- Parallelization of the other functions required a dynamic communication between the two
ranks, which we were not able to achieve even after several trials. The issue lies with the
formation of the interpolant which requires the information from the other side of a processor
boundary.

A complete and correct implementation of the MPI code is at the forefront of future work as it will
give a better idea for the speed-ups obtained when compared to CUDA. As GPU’s are limited by the
amount of global memory, realistic 3D simulations will require the use of MPI as a performance
enhancing implementation of the code.

References
[1] J. Nave, R. Rosales, and B. Seibold, “A gradient-augmented level set method with an optimally
local, coherent advection scheme.” Journal of Computational Physics, Vol. 229, pp. 3802–3827, 2010.

[2] W. Rider and D. Kothe, “Reconstructing volume tracking.” Journal of Computational Physics,
Vol. 141, pp. 112-152, 1998.

 13

VORTEX VELOCITY ADVECTION CASE (All timing tests are done on this case)

 Initial Circle at t = 0 Deformation at t= 1

 Deformation at t = 3 Maximum Deformation

Reversed Flow. Deformation at t = 6 Back to original position with some deformation

 14

SYMMETRIC VELOCITY ADVECTION CASE

 Initial Circle at t = 0 One sided deformation

 Reversing the direction of flow Deformation in other direction

 Final time period Back to original position with some deformation

