Chia-Wei Kuo, Ph.D.

Google-Scholar	My-Website	in : Linkedln	: 608-335-5745	🖂 : phxiranter@gmail.	com	
SUMMARY			g (minored in Mathema CAE, thermal analysis	tics) s, engineering modeling, and p	orogram-	
	ming 2 Editor's Pick Papers in <i>Physics of Fluids</i>; Phi Kappa Phi member 					
	 89 Google Scholar Citations; 8 Journal Publications; 16 Conference Proceedings; 1 Patent Served as a reviewer for 7 conference papers Gave over 80 presentations to industry/national sponsors as a Ph.D. student 					
Eprovensor	The University	of Wiggonsin	Andian	Madia	on WI	
EDUCATION	The University <i>Ph.D. in Mechanic</i>		inor in Mathematics		on, WI ber 2022	
	 Research: Developed new CFD numerical solvers for two-phase flow simulations Sponsor: Caterpillar Inc. (2016 - 2020), US Army Research Laboratory (2020 - 2022) 					
	National Taiwar	•		Taipei,		
	M.S. in Mechanica • Research: Imp	• •	nsfer performance of ar		ary 2016 chnique	
	 Research: Improved the heat transfer performance of an industrial motor via CAE technique Sponsor: TECO Electric and Machinery Co. (Top industrial motor manufacturer in Taiwan) 					
	National Cheng			Tainan,		
	B.S. in Aeronautic		s Reflective Shock Tunne		ine 2010	
		onal Science Coun		-1		
Full-Time	Sr. Research an					
Employment	Heraeus Quartz N		, Buford, GA fiber manufacturing)	Nov 2022 -	Present	
				n Heraeus North America.		
	Senior Mechanic	cal Engineer, Fa	n and Thermal Busi	ness Group		
	Delta Electronics,	Taiwan		Feb 2016 - A	Apr 2016	
	· –		inufacturer in Taiwan)	1 4		
			of Delta's ventilation fa ages of Delta's GBR, SN	an products. MT, and SLM-series ventilation	on fans.	
			rmal Research Team		0.010	
		-	oundation, Taiwan ponsored by Taiwan Bu	Aug 2011 - I ureau of Energy)	Jec 2013	
	• Improved the heat transfer performance of an industrial oven, making the temperature varia- tion inside the oven less than 7K.					
			of large-scale solar therating the solar thermal	mal systems. diffuse fractions in Taiwan.		
Honor	• 2 Editor Pick's	s Papers in the pre	eminent fluid dynamics	s journal <i>Physics of Fluids</i>	2022	
		· -		ity of Wisconsin - Madison)	2018	
		· -	Indergraduate in Nation graduate Research Scho	nal Cheng Kung University) larship	$2010 \\ 2009$	
TECHNICAL SKILLS	CFD: OpenFOAM	I, Fluent, COMSC	DL, CFX, ICEMCFD, F	Pointwise		
	Programming: (
		,	E, ANSYS Workbench			
	Renewable Ener	gy Engineering:	TRNSYS			

	Chia-Wei Kuo, Curriculum Vitae Page 2 of 5
Doctoral Research	 Developed New CFD Solvers for High Fidelity Simulations of Engine Sprays Developed novel C++ CFD numerical solvers for performing high-fidelity simulations of engine sprays with much lower computational cost. The new solver is projected to save around 20 times of CPU-hrs compared with traditional approaches. The new features of this solver include the followings:
	1. implemented within the open-source $C++$ platform, OpenFOAM.
	2. included compressible pressure Poisson and energy equation solvers for addressing fluid compressibility and heat transfer phenomena.
	3. included droplet breakup models to describe the secondary atomization of sprays.
	4. included Lagrangian vaporization models to compute droplet vaporization.
	5. employed Crank-Nicolson scheme to numerically solve the droplet equation of motion.
	6. can be successfully applied in large-scale engineering parallel computations.
	 Modeling of Secondary Droplet Breakup in Sprays Developed one of 1st droplet breakup models based on Maximum Entropy Formalism (MEF) to compute further hydrodynamic breakup of droplets in sprays. The model satisfies the conservation constraint of mass, momentum, and energy. Fewer empirical correlations are required to reach a full closure of the model. The model shows that droplet size and velocity are dependently distributed, which contrasts with the assumptions commonly adopted in the literature.
	 Analyzed the Speedup Performance of Adaptive Mesh Refinement (AMR) Method for Spray Problems Proposed the 1st analytical expression for estimating the upper-bound of AMR speedup performance. The analysis shows that using AMR cannot totally alleviate the computational cost of spay simulations. Besides the load balancing issue, a less obvious contributor to diminishing AMR performance is the increasing Frobenius condition number of AMR, which is associated with the eigenvalues of the pressure Poisson matrix.
Master Research	 Heat Dissipation Enhancement of an Industrial Totally-Enclosed Fan-Cooled Motor through Frame Designs Enhanced the heat dissipation performance of a large-scale industrial motor, making the maximum temperature below 403K and the average temperature difference below 10K. Proposed 8 new designs of fins that are mounted on the industrial motor frame.
Part-Time Employment	Graduate Research Assistant, Department of Mechanical EngineeringThe University of Wisconsin – MadisonAug 2016 - Nov 2022• Developed C++ numerical solver titled VoFLE for large-scale spray simulations
	 Graduate Teaching Assistant, Department of Mechanical Engineering The University of Wisconsin – Madison Jan 2021 - Dec 2021 Graded the graduate-level courses Computational Fluid Dynamics and Intermediate Fluid Dynamics
	Graduate Research Assistant, Department Mechanical Engineering National Taiwan University, TaiwanAug 2014 - Jan 2016• Improved the heat transfer rate of an industrial motor via CFD and CAE techniques.

Undergraduate Researcher, Department of Aeronautics and Astronautics

National Cheng Kung University Feb
 2009 - Jan 2010

• Assisted in drawing 40 sheets of engineering blueprints on a hypersonic reflective shock tunnel.

CERTIFICATIONS	 Machine Learning C.W. Kuo. "Introduction to TensorFlow for artificial intelligence, machine learning, ar deep learning." <i>DeepLearning.AI</i>, 2021. 		
Professional Affiliations	Society of Automotive Engineers (SAE) International 2016 - Pres	ent	
Reviewers	2021 ASME Internal Combustion Engine Fall Conferences: 2 papers reviewed22020 ASME Internal Combustion Engine Fall Conferences: 1 paper reviewed22019 Thermal and Fluids Engineering Conference: 1 paper reviewed22017 SAE International Conference on Engines & Vehicles: 1 paper reviewed2	021 021 020 019 017 016	
Patents	 Heat Transfer M.Y. Hsu, C.H. Wang, C.H. Tsai, M.J. Huang and C.W. Kuo. "Motor frame with splitt type heat dissipation channel." <i>Taiwan Intellectual Property Office</i>, TWM537180, 2017. 	ing	
PUBLICATIONS	Journal Publications C.W. Kuo and M.F. Trujillo. "Simulation of liquid jet atomization and droplet break via a Volume-of-Fluid Lagrangian-Eulerian strategy." <i>Physics of Fluids</i>, 34, 113326, 2 (selected as an Editor's Pick Paper). 		
	 C.W. Kuo and M.F. Trujillo. "A maximum entropy formalism model for the breakup of droplet." <i>Physics of Fluids</i>, 34, 013315, 2022 (selected as an Editor's Pick Paper). 	of a	
	 C.W. Kuo and M.F. Trujillo. "An analysis of the performance enhancement with adapt mesh refinement for spray problems." <i>International Journal of Multiphase Flow</i>, 140: 1036 2021. 		
	 C.W. Tseng, C.W. Kuo, M.F. Trujillo and C. Rutland. "Evaluation and validation large-eddy simulation sub-grid spray dispersion models using high-fidelity volume-of-fl simulation data and engine combustion network experimental data." <i>International Jour</i> of Engine Research, 20(6): 583-605, 2019. 	uid	
	5. C.W. Kuo and K.C. Chang. "In-situ measurements of solar diffuse fraction in south Taiwan." Journal of the Chinese Institute of Engineers, 38(6): 723-730, 2015.	ern	
	 C.W. Kuo, W.C. Chang and K.C. Chang. "Modeling the hourly solar diffuse fraction Taiwan." <i>Renewable Energy</i>, 66: 56-61, 2014. 	ı in	
	 C.W. Kuo, P.S. Yen, W.C. Chang and K.C. Chang. "The design and optical analysis compound parabolic collector." <i>Proceedia Engineering</i>, 79: 258-262, 2014. 	3 of	
	 C.W. Kuo, W.C. Chang and K.C. Chang. "Distribution of solar diffuse fraction in Taiwa Energy Proceedia, 57: 1120-1129, 2014. 	ın."	
	 Conference Proceedings 1. M.F. Trujillo and C.W. Kuo. "Modeling spray atomization by a hybrid Volume-of-Fl Lagrangian-Eulerian approach." 75th Annual Meeting of the Division of Fluid Dynam Bulletin of the American Physical Society, Indianapolis, IN, 2022. 		
	 C.W. Kuo, M. Ananth, A. Strzelec and M.F. Trujillo. "VoFLE simulations to model U spray evaporation." <i>The ASME ICE Forward 2022 Conference</i>, Indianapolis, IN, 2022. 	WS	
	 C.W. Kuo and M.F. Trujillo. "Volume-of-Fluid Lagrangian-Eulerian model for spray sin lations." <i>ILASS-Americas</i> 32th Annual Conference on Liquid Atomization and Spray Syste Madison, WI, 2022. 		
	 C.W. Kuo and M.F. Trujillo. "Statistical model of splashing products from the break of a droplet." <i>ILASS-Americas</i> 31th Annual Conference on Liquid Atomization and Sp Systems, 2021 (virtual). 		

- 5. C.W. Kuo and M.F. Trujillo. "Examining the deterioration of adaptive mesh refinement performance in spray computations." *ILASS-Americas* 31th Annual Conference on Liquid Atomization and Spray Systems, 2021 (virtual).
- C.W. Kuo and M.F. Trujillo. "Revisiting the Promise of Adaptive Mesh Refinement." ILASS-Americas 30th Annual Conference on Liquid Atomization and Spray Systems, 2020 (virtual).
- C.W. Kuo and M.F. Trujillo. "A Maximum-Entropy-Formalism for Secondary Droplet Breakup." ILASS-Americas 30th Annual Conference on Liquid Atomization and Spray Systems, 2020 (virtual).
- C.W. Kuo and M.F. Trujillo. "Speedup analysis of adaptive mesh refinement in the simulation of spray formation." *ILASS-Americas* 30th Annual Conference on Liquid Atomization and Spray Systems, Tempe, AZ, 2019.
- C.W. Kuo and M.F. Trujillo. "A study of adaptive mesh refinement speedup in spray atomization." International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, Detroit, MI, 2019.
- C.W. Kuo and M.F. Trujillo. "Benefits of AMR for atomization calculations." ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, 2018.
- C.W. Kuo and M.J. Huang. "Fin designs of TEFC motor: heat dissipation enhancement." The 22th National Computational Fluid Dynamics Conference, New Taipei, Taiwan, 2015.
- 12. P.S. Yen and **C.W. Kuo**. "Policy for solar water heaters in Taiwan: An International Perspective," *Grand Renewable Energy*, Tokyo, Japan, 2014.
- C.W. Kuo, P.S. Yen and K.C. Chang. "Generation of typical solar radiation 2014 year for Taiwan." *Grand Renewable Energy*, Tokyo, Japan, 2014.
- 14. C.W. Kuo, K.C. Chang and P.W. Chen. "In situ analysis of solar diffuse fraction in Tainan," The 30th Conference of the Chinese Society of Mechanical Engineers, Yilan, Taiwan, 2013.
- 15. C.W. Kuo, Y.C. Liu and W.C. Chang. "Modeling of heat transfer in an industrial electric oven." The 20th National Computational Fluid Dynamics Conference, Nantou, Taiwan, 2013.
- C.W. Kuo, I.M. Liu and T.S. Li. "Optimization of large-scale solar thermal systems: A case study," *The* 19th National Computational Fluid Dynamics Conference, Penghu, Taiwan, 2012.

Workshop/Symposium

- 1. M.F. Trujillo **C.W. Kuo**. "Simulation of liquid jet atomization and droplet breakup via a Volume-of-Fluid Lagrangian-Eulerian strategy." *Center for Unmanned Aircraft System Propulsion (CUP)* 4th CUP Workshop, 2022 (virtual).
- C.W. Kuo and M.F. Trujillo. "Developing Volume-of-Fluid Lagrangian-Eulerian model for spray simulations." Annual Meeting of Direct-injection Engine Research Consortium, The University of Wisconsin - Madison, Madison, WI, 2022.
- 3. C.W. Kuo and M.F. Trujillo. "Analyzing the benefits of adaptive mesh refinement in highly-resolved VoF simulations of atomization." Annual Meeting of Direct-injection Engine Research Consortium, The University of Wisconsin Madison, Madison, WI, 2019.

Thesis

- 1. C.W. Kuo. "Volume-of-Fluid Lagrangian-Eulerian models for spray simulations." *Ph.D. dissertation*, The University of Wisconsin Madison, 2022.
- C.W. Kuo. "Heat dissipation enhancement of an industrial totally-enclosed-fan-cooled motor through frame designs." M.S. thesis, National Taiwan University, Taiwan, 2016.
- C.W. Kuo. "Design of a hypersonic reflective shock tunnel." Undergraduate Special Project, National Cheng Kung University, Taiwan, 2010.

Mechanical Engineering

Iechanical Engineering	
• (Fluid Dynamics) Ideal Fluid Flows, Turbulent Flows, Viscous Flows, Compressible Flow	vs,
Intermediate Fluid Dynamics	
• (Thermal Dynamics/Heat Transfer) Intermediate Thermodynamics, Advanced Thermod	ly-
namics, Heat Transfer, Heat Conduction and Radiation, Turbo Engine Principle	
• (Numerical Method) Computational Fluid Dynamics, High Performance Scientific Computi	ng

Mathematics

Graduate Coursework

> • Methods of Computational Mathematics, Methods of Applied Mathematics, Numerical Linear Algebra

Graduate Course Projects	 Green's Function Solutions for 2D Non-Homogenous Diffusion Eq. Course: Methods of Applied Mathematics (I) Derived analytical solutions to linear advection-diffusion problems using Applied this approach to identify flow structures in engineering sprays. 	Nov 2018 - Dec 2018
	 Parallelizing a Two-Phase Advection Equation Solver Using OpenM Course: High Performance Scientific Computing Implemented multi-core, multi-node and GPU parallelizations of a two-p Demonstrated a speedup of 47.5X on GPUs and 22.4X on CPUs. 	Nov 2017 - Dec 2017

Volunteering	Asian Mental and Health Association
	Assistant

Feb
 2014 - May 2014