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Abstract 

Adaptive mesh refinement (AMR) has been introduced as an attractive means of significantly improving com-
putational efficiency for a variety of two-phase flow problems. In the current study, the benefits of AMR are 
investigated for the case of liquid jet atomization. The evaluation consists of a systematic analysis of results 
from the interDymFoam (AMR octree) and interFoam (static octree) codes, both of which form part of the 
family of solvers distributed within the open source OpenFOAM C++ Toolbox. The two-phase flow treatment is 
based on an algebraic VoF methodology. As a preliminary set of exercises, cases for pure advection, stationary 
wave dynamics, and Rayleigh-Plateau breakup of a cylindrical liquid element are considered. The results from 
these exercises confirm the expected trend of higher numerical efficiency in AMR, while still retaining essen-
tially the same level of accuracy as the fixed embedded mesh solutions. However, for the liquid jet atomization, 
the behavior is a bit more complicated. First, at lower levels of Weber number, we observe a similar trend as the 
preliminary exercises. At higher Weber numbers, due to a noticeable increase in interfacial area density, sub-
stantial inhomogeneities are formed in the underlying grids yielding slower solutions of pressure Poisson equa-
tion, thereby potentially offsetting the benefits of this approach. In fact, at much higher Weber numbers, for in-
stance, those pertaining to Diesel injection, the results suggest that a fixed embedded mesh would provide better 
computational efficiency. However, this conclusion depends on the target lowest level of numerical resolution, 
Δxmin. The current work shows how the efficiency of AMR suffers from increasing interfacial area density, and 
how this can be alleviated via a decrease in Δxmin. Various test cases are presented to illustrate this effect.  
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1. Introduction  
   Adaptive mesh refinement (AMR) was introduced by Berger and Oliger [1] and Berger and Colella [2] as a 
means of dynamically allocating a high level of numerical fidelity in areas requiring it. A common way to achieve 
this is to dynamically reduce the grid spacing, Δx, in these regions of high-fidelity demand, which can be identified 
through the use an AMR cost function. One of the cost functions used in the early AMR work is the local trunca-
tion error [1][2] based on Richardson extrapolation method. For two-phase problems, the interface is the most 
obvious choice for the cost function, since it is the location where the highest level of resolution is needed. For 
instance, in the work of Theodorakakos and Bergeles [3], the tagging of an interface is characterized by having 
the liquid fraction 𝛼	between 0.2 and 0.8. In the work of Malik et al. [4], the tagging is instead executed where 
the normalized curvature, the product of curvature and the cell size, is below 0.2 [5]. Common standard problems 
that are employed in 2-phase flow investigations to gauge the degree of AMR acceleration include rotation of 
Zalesak sphere [6][7], droplet deformation in the 3D vortical flow [6][8], Rayleigh–Taylor instability [9][10], and 
the secondary breakup of a droplet [11]-[14]. Among these, the works of Laurmaa et al. [7] and Zuzio and Esti-
valezes [9] further demonstrate that the smaller the value of the minimum grid size, Δxmin, the better speedup 
benefit AMR would attain. 
   Considering the case of spray formation and liquid jet atomization, Fuster et al. [5] reported that by using 
AMR, a 50% reduction of total cell count could lead to a 38% saving of total CPU time. Within the Lagrangian-
Eulerian spray modeling approach, a common procedure for modeling sprays, the work by Tonini et al. [15] 
showed that the use of AMR could save 13%-29% of CPU time with a minimum mesh size of 0.15 mm. The paper 
by Xue and Kong [16] reported that a computational savings of up to 67% and 79%, for hollow-cone and solid-
cone sprays, could be achieved. A potential issue with AMR may be its poor scaling. As indicated by Li and 
Soteriou [17], the scalability of AMR was worse than that of fixed embedded mesh in terms of the deviation from 
the ideal strong scaling slope. This finding motivates a closer look at the AMR benefits for spray problems. 
   In the present work, the advantage envisioned by AMR is examined for the atomization and spray formation 
problem. Due to significantly more pronounced interfacial area changes as opposed to the milder two-phase flow 
problems [6]-[14], it is shown that AMR does not consistently show an improvement over a well-designed static 
mesh with an embedded high-resolution region. The reasons for this performance are examined leading to the 
definition of a metric, which is shown to indicate when AMR improvements are, and are not, to be expected. 
Reasons for this lack of performance are also briefly discussed.  
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   The evaluations originate from codes interDymFoam (octree-based AMR) and the interFoam (octree-
based fixed embedded mesh), both of which form the family of algebraic VoF (Volume of Fluid) solvers in the 
open source C++ CFD platform (version 2.1.1) [18]. With the addition of adaptive mesh capability, 
interDymFoam is an extended version of interFoam, where the two codes employ the same discretization 
and time marching procedure. The explanation of the algebraic VoF approach employed in both codes, as well as 
its verification/validation can be found in Ref. [19]. The outline of the rest of paper is as follows. In section 2, we 
would illustrate the AMR implementation in interDymFoam. In section 3, standard exercise tests commonly 
used in interface capturing codes are performed. We then proceed to systematically evaluate the benefits of AMR 
for spray cases in sections 4 and 5.  

2. AMR implementation and Performance Evaluation 
   The implementation procedure of AMR is initiated with the evaluation of a cost function for identifying cells 
in need of further refinement or coarsening. The criteria employed is 

  
10% > ∇𝛼 ×Δ𝑥 > 10+, for mesh refinement (1) 

 
∇𝛼 ×Δ𝑥 < 0.9×10+, for mesh coarsening, (2) 

 
where ∇𝛼 ×Δ𝑥 is the product of the magnitude of the liquid fraction gradient, ∇𝛼 , and the local mesh size 
Δ𝑥. If the cell-centered value of a cell satisfies Eq. (1) (parent cell), it would be recursively split into eight smaller 
child cells following the octree structure (see Fig. 1(a)). The sizes of the child cells are given by  
   
∆𝑥2345637 = 0.5:×∆𝑥;25<56=>	for	𝑁 − level	refinement.   (3) 

  
For the sake of narrowing the scope of the present investigation, we are only considering a two-level AMR (N=2), 
although a three-level or higher AMR is also available in interDymFoam. Once a refinement has taken place, 
the flow field is mapped from the parent cell to the child cells by assigning them the same value [20],  
 
∅L,5 = ∅M			𝑖 = 1,2,3, … ,8, (4) 

 
where ∅L,5 is the cell-centered value of the ith child cell, and ∅M is the corresponding value of the parent cell.  
   In the case of mesh coarsening, i.e. if any of the eight child cells belonging to the same node satisfies       
Eq. (2), the cluster of these child cells would be inversely coarsened to be a single parent cell (see Fig. 1(b)). The 
cell-centered value of the recovered parent cell would be the average of its child cells [20], 
 

∅M =
1
8

∅L,5
S

5TU
. (5) 

 
This applies to the liquid fraction, velocity field, and any other cell-centered quantity. Other schemes for mapping 
parent-child or child-parent have been presented in the literature [3][16], which applied to more general grid 
structures. For our case, the present method offers fast performance and is sufficiently accurate for the type of 
overall mesh structure employed. In the computations that we have performed, we have observed that the ratio of 
the time span during refinement to that of coarsening is around 0.8 for a spray configuration.  
 
 

   
 

   
 

 
 
 
   The jet atomization computations using the AMR grid are compared to a static mesh with an embedded highly-
refined region as illustrated in Fig. 2. The global domain extent in all computations is 1260µmx1260µmx9150µm 
along the respective (x, y, z) directions, where z-direction is the spray axis. For the sake of performing consistent 
comparisons, the minimum mesh size of the fixed embedded mesh (Fig. 2a) and AMR (Fig. 2b) is the same, 
namely Δxmin=3.21µm.  
 

Figure 1 Mesh updating steps of AMR: (a) refinement (b) coarsening.   

(a) (b) 
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   For the performance evaluation, the computations are performed up to a physical end time, tf. The following 
metrics quantify the AMR speedup:  
 

speedup(n) = VWX
VYZ[

 (6) 

speedup(Cell) = 	 VWX :\]^^,WX
VYZ[ :\]^^,YZ[

 (7) 

speedup(a,U,P) = VWX(`,a,b) :\]^^,WX
VYZ[(`,a,b) :\]^^,WX

,	 (8) 
 
where 𝑡ef and 𝑡ghi is the total elapsed CPU time for the fixed embedded mesh and AMR cases, respectively 
(using exactly the same number of compute nodes). Equation (6) provides the most straightforward approach to 
performance evaluation. Equation (7) computes the AMR efficiency as defined by Fuster et al. [5], since it ac-
cesses how much AMR speedup could be attained for a given reduction of the number of cell counts. For instance 
and speedup of 1.0 would correspond to a reduction in computation time in proportion to the reduction in total 
cell count. Equation (8) is aimed at providing the insight into whether AMR efficiency is substantially affected 
by the AMR implementation, so it would only consider the time cost of solving the governing equations of VoF, 
namely, the transports of liquid fraction and momentum, and the pressure-Poisson solution. Naturally, a speedup 
value above one computed by either Eqs. (6)-(8) represents favorable AMR performance. 

3. Standard exercises  
   The following standard cases are often used when analyzing the performance of an interface capturing scheme. 
They are repeated here to establish the benchmark expectation for the performance of AMR. The cases correspond 
to 3D pure-advection [6][8], stationary wave dynamics [9], and the 3D Rayleigh-Plateau breakup of a cylindrical 
liquid element [21], and are illustrated in Fig. 3. The minimum mesh size of each exercise is Δx=1/320, λ/Δx=160, 
and Δx=0.5µm, respectively. Here λ is the wavelength of the initial perturbation imposed on the stationary wave.  
 

 

   
     
 
 
 
     
     
   Figure 4 shows the speedup(n) performance of AMR based on Eq. (6) both on an instantaneous level (blue 
curve) and on a time-average level (red-curve). The average speedup(n) using AMR is 4 to 7, essentially confirming 
the AMR benefit reported in the literature. In all of these cases, grid refinement/coarsening operations were per-
formed every 3, 5, and 5 time steps, respectively for pure advection, stationary wave dynamics, and Rayleigh-
Plateau breakup. The minimum values in instantaneous speedup(n) correspond to time steps when AMR is active, 
and conversely the maximum values in speedup(n) coincide with AMR being dormant. 

Figure 3 Partial results of the standard exercises showing the liquid fraction contours: (a) 3D pure advection show-
ing the initial object shape [6][8] (b) stationary wave dynamics [9], and (c) Rayleigh-Plateau breakup of a cylindri-
cal liquid element [21]. 

(a) (b) (c) 

Figure 2 Spatial mesh distribution shown at the centerline plane of the spray configuration: (a) fixed embedded 
mesh (b) AMR.   

Δxmin=3.21µm 

(a) (b) 
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4. Spray Configuration  
   Now we would turn the focus to the more realistic spray atomization problems using the injection velocity 
(Uinj), and hence the Weber number (We), as a means of controlling atomization severity. The Weber number is 
given by,  
 
𝑊𝑒 = 𝜌m𝑈56o% 𝐷 𝜎, (9) 

 
where 𝜌m	is the density of the liquid and 𝜎 is the surface tension coefficient. The test cases for spray configura-
tion are summarized in Table 1. 
 
Table 1 The description of the test cases for spray configuration using a water-ethyl acetate system. The properties 
of water are: density (𝜌m) is 997 kg/m3, kinematic viscosity is 8.927×10-7m2/. The properties of ethyl acetate are: 
density is 902 kg/m3, and kinematic viscosity is 4.723× 10-7m2/s. The surface tension coefficient (𝜎)  is 
0.0068kg/s2.  
 

 Case #1 Case #2 Case #3 
Uinj 25 m/s 50 m/s 100 m/s 
We 8,247 32,989 131,960 

 
   To avoid running into issues related to significant changes in the atomization behavior as the mesh resolution 
is enhanced, an adequate grid size, Δx, was a priori identified. This adequate mesh refinement is defined as the 
largest grid refinement for which the intact liquid length (𝐿>5s) reaches reasonable numerical convergence. The 
intact liquid length is defined as 

 
< 𝐿>5s >

𝐷
=

1
𝑡4 − 100𝜇𝑠

𝐿L;23 𝑡v 𝑑𝑡′
Vy

Uzz{|
, (10) 

 
where 100 ms is an elapsed time used to ensure the initial transient has passed, and the final value of 𝑡4 is ade-
quately long to ensure a statistically stationary result. The orifice diameter, D, is equal to 90µm. Results corre-
sponding to D/Δx =18, 24, 28, are shown in Fig. 5(a) and Fig. 5(b) for injection velocities of We=32,989     
(Uinj=50 m/s) and We=131,960 (Uinj= 100 m/s), respectively. Good convergence is attained at D/Δx =28, where 
the difference between the finer grids is 5.6% for We=32,989, and 2% for We=131,960. Consequently, D/Δx =28 
would be regarded as the benchmark mesh size in the following analysis.  
 
 
 
 
 
 
 

(a) 

Figure 4 Speedup of AMR for the standard exercises: (a) 3D pure advection (b) stationary wave dynamics, and 
(c) Rayleigh-Plateau breakup of a cylindrical liquid element. The instantaneous and time-averaged values are 
presented in blue and red curves, respectively. 

(b) (c) 



ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22-26, 2018 

 5 

 

  

      
 
The injection velocity 𝑼 is described in the cylindrical coordinate (𝒆𝒓, 𝒆𝜽, 𝒆𝒁) by, 

 
𝑼 = 0.01 𝑈56o − 𝑈56o 1 − 𝑟 𝑅 U � 𝒆𝒓 + 0𝒆𝜽 + 𝑈56o 1 − 𝑟 𝑅 U �𝒆𝒛, (11) 

 
where 𝑟 is the radial distance, and 𝑅 is the radius of the orifice radius. The one-seventh power law stems from 
the common findings of the mean injection velocity profile in the channel flows. The radial velocity formulation 
is motivated by velocity profile computations using the ECN Spray A configuration.  
   For the AMR mesh shown in Fig. 2(b), a uniform coarse grid is used as the initial condition. As spray is injected 
from the orifice, the cluster of grids of O(10) cells across the interface with the interface being the midplane would 
be adaptively refined. For the fixed embedded mesh, on the other hand, the static telescope-shaped refined grid 
with the extent of 600µm×600µm×5400µm respectively in x-, y-, z-directions is imposed, expecting for contain-
ing all possible atomization regions (see Fig. 2(a)). Consequently, the number of grids in AMR should always be 
smaller than that of fixed embedded mesh, and the difference is expected to shrink as time evolves. This is con-
firmed in Fig. 6, where the three cases shown have a respective value for We = 8,247 (𝑈56o=25m/s), We = 32,989 
(𝑈56o=50m/s), and We = 131,960 (𝑈56o=100 m/s).  
 

 
     
 
 
     
   The speedup results are displayed in Fig.7. In Fig. 7(a), speedup(Cell), based on Eq. (7) is shown as a function 
of time corresponding to the different atomization cases. In Fig. 7(b), the speedup(a,U,P), is displayed, but now 
excluding the costs associated with refinement and coarsening of the mesh. To enforce a consistent comparison, 
the time step size is the same for both AMR and the fixed embedded mesh. The findings show two trends. The 
first trend is that initially, when the interfacial area has not grown much, AMR outperforms the fixed embedded 
mesh significantly. This is in agreement with the conventional two-phase flow cases that demonstrate that for mild 
changes in the interfacial area the efficiency introduced by AMR is well worth its usage. However, as the calcu-
lation proceeds and atomization leads to the vast growth of interfacial area at various locations, the performance 
of AMR decays to such a degree that it becomes less efficient than the fixed mesh. Hence, the purpose of AMR 
is no longer met in the main part of the atomization process.  
 
 
 

Figure 5 Grid sensitivity test: (a) We=32,989, (b) We=131,960. 

(a) (b) 

Figure 6  Ratio of AMR and fixed grid computational cells. 
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The second trend indicates that the time and the severity of the AMR performance decay occurs sooner and 
more drastically as the global Weber number increases. Again, this is linked to an increased severity of the at-
omization process, and is discussed in the followed section. 

5. Discussion 
   As the Weber number increases, the speedup offered by AMR suffers drastically to the point where it eventu-
ally becomes slower than the fixed embedded mesh. This is related to the large quantity of refinements taking 
place in an increasing number of places as the atomization process becomes more severe with increasing Weber 
number and time. Motivated by this finding, we define the following interfacial area density, 

 
𝜌� = 𝐴� Ω, (12) 

 
where 𝐴�	is the interfacial area, and Ω is a relevant macroscopic domain. The refined domain within AMR for 
fully covering the interfacial regions, Ω�, is defined as,  
  
Ω� = 𝐴�𝐾U∆x�, (13) 

 
where 𝐾U is O(10) and is more than large enough to contain the interfacial region within the VoF representation 
along with a band of 5 or more neighboring cells. The interfacial cell size, ∆x�, is the size within this interfacial 
region, such that ∆x� 	= ∆x�56. Combining Eqs. (12) and (13) leads to the normalized interfacial area density, 
 
Ω� Ω = 𝜌�𝐾U∆x�. (14) 

 
From the results shown below in Fig. 8, it is evident that the high efficiency of AMR coincides with a value for 
ΩΓ/Ω that is significantly below one. These conditions pertain to an interfacial region that is well below the size 
of the macroscopic domain. Of course, as atomization develops and the interfacial area expands throughout Ω, 
the ratio, Ω� Ω, grows considerably leading to the difficulties with AMR performance as indicated in Fig. 8. The 
efficiency of AMR could be improved by systematically reducing, ΔxΓ, since this would directly cause the inter-
facial region ratio, Ω� Ω, to be reduced well below one. In fact, this coincides with the conclusions of Laurmaa 
et al. [7] and Zuzio and Estivalezes [9]. 
 

 
 

Figure 7 Speedup analysis for spray configurations: (a) total CPU time, (b) the CPU time excluding the costs 
of mesh refinement and coarsening.  

(b) (a) 

Figure 8 Evolution of the ratio of interfacial and macroscopic regions.  
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6. Conclusion 
   In this study, an evaluation of the benefits of AMR for simulations concerning liquid jet atomization is pro-
vided. Beginning with canonical or standard two-phase problems, our findings agree with the literature, i.e. AMR 
offers attractive speedups. However, in the case of atomization, the results show that the AMR performance be-
comes significantly poor, even worse than a well-designed fixed mesh, once atomization has developed and as 
the Weber number increases. A key metric used to determine when we expect to achieve good results is provided, 
namely Ω� Ω = 𝜌�𝐾U∆x�. Good performance is expected for values of this metric that are well below one, and 
conversely as this ratio grows, AMR performance suffers. This metric indicates that systematic reductions in ∆x�, 
lead to the continued strong performance by AMR. Unfortunately, since ∆x�, is inherently linked to the time step 
size through the CFL restriction, this continued reduction in interfacial grid spacing will at some point stop being 
practical in realistic spray configurations.  
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